2.5D Machining:
Milling and Drilling
Typical 2.5D drilling and milling tasks can be programmed efficiently using hyperMILL® CAM software.
hyperMILL® 2.5D machining is typically applied to plate processing in tool and mold manufacturing. Pocket machining, plane levels, contours and drill holes present very unique challenges here. Intelligent mechanisms, such as the recognition of pocket features can now help the CAM user to program faster than ever before.
With its high-performance cutting functions (HPC), hyperMILL® MAXX Machining will boost machining performance during 2.5D roughing.
Accelerated 2.5D programming
2D components normally offer great potential for process automation. hyperMILL® therefore provides a new and comprehensive solution that allows programming to be completely automated. All 2.5D strategies can also be applied to multi-axis machining
Milling
- Pocket Milling
- Rectangular Pocket
- Inclined Pocketing
- Contour Milling
- Contour Milling on 3D models
- Inclined Contouring
- Chamfer Milling on 3D models
- Rest Machining
- Face Milling
- Playback Milling
- Plunge Milling
- Multi-axis indexing with fixed tool angle
Drilling
- Centring
- Simple Drilling
- Drilling with chip break
- Drilling with pecking cycle
- Reaming
- Tapping
- Thread Milling
- Boring
- Helical Drilling
- Drilling circular pockets
- Gun Drilling
Pocket Milling is suitable for the machining of straight and inclined pockets with any contour. This includes the automatic recognition of islands and rest material areas. Open and closed pockets can also be machined without any issues when using the ‘Pocket Milling’ strategy.
Automatic feature recognition |
Supports 2D control cycles |
2D HPC machining |
Contour Milling optimizes the machining of open and closed contours with the option of path compensation, automatic rest material detection and the machining of undercut contours that can be difficult to access. The ‘Contour Milling on 3D Model’ strategy also includes:
|
|
During 2.5D contour and pocket machining, some areas cannot be machined with larger tools. The rest material strategy detects these component features and calculates separate toolpaths that can be machined with smaller tools.
Rest Machining with contour or pocket machining cycle |
Tangential infeed for best surfaces |
The 2D curve-based ‘Plunge Milling’ cycle provides efficient roughing and finishing of vertical contours, even on difficult to cut materials. |
All 2.5D machining strategies can also be applied to multi-axis indexing with a fixed tool angle. During this process, the orientation of machining is defined using a frame. Simple frame definition and management assist the user in programming operations with tilted fourth and fifth axes. With transformations in the NC programs, users can easily and conveniently create programs for multiple components clamped within a single plane or in a tombstone fixture, for instance. All traverse movements are checked for collisions and path-optimized. |
hyperMILL® 2.5D-Strategies: T-Slot Milling on 3D Model
Did you know that also T-slots can be programmed quickly and comfortably with hyperMILL®‘s feature technology? Feature-based machining speeds up and simplifies NC programming by using automated programming sequences.
hyperMILL® 2.5D-Strategies: Chamfer Milling on 3D Model
Did you know how fast and easy the deburring and chamfering can be programmed with hyperMILL®? With “2D chamfer milling on 3D model”, component edges with and without modelled chamfers can be deburred safely, in just a few clicks.
hyperMILL® 2.5D-Strategies: Playback Milling
Did you know the playback milling strategy and the playback function can be used for 2.5D machining? With these you can create toolpaths and boundaries interactively.